Tailored Research
The GPT Researcher package allows you to tailor the research to your needs such as researching on specific sources or local documents, and even specify the agent prompt instruction upon which the research is conducted.
Research on Specific Sources 📚
You can specify the sources you want the GPT Researcher to research on by providing a list of URLs. The GPT Researcher will then conduct research on the provided sources.
from gpt_researcher import GPTResearcher
import asyncio
async def get_report(query: str, report_type: str, sources: list) -> str:
researcher = GPTResearcher(query=query, report_type=report_type, source_urls=sources)
await researcher.conduct_research()
report = await researcher.write_report()
return report
if __name__ == "__main__":
query = "What are the latest advancements in AI?"
report_type = "research_report"
sources = ["https://en.wikipedia.org/wiki/Artificial_intelligence", "https://www.ibm.com/watson/ai"]
report = asyncio.run(get_report(query, report_type, sources))
print(report)
Specify Agent Prompt 📝
You can specify the agent prompt instruction upon which the research is conducted. This allows you to guide the research in a specific direction and tailor the report layout.
Simplay pass the prompt as the query
argument to the GPTResearcher
class and the "custom_report" report_type
.
from gpt_researcher import GPTResearcher
import asyncio
async def get_report(prompt: str, report_type: str) -> str:
researcher = GPTResearcher(query=prompt, report_type=report_type)
await researcher.conduct_research()
report = await researcher.write_report()
return report
if __name__ == "__main__":
report_type = "custom_report"
prompt = "Research the latest advancements in AI and provide a detailed report in APA format including sources."
report = asyncio.run(get_report(prompt=prompt, report_type=report_type))
print(report)
Research on Local Documents 📄
TBD!